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Abstract
Functional languages manage heap data through garbage col-
lection. Since static analysis of heap data is difficult, garbage
collectors conservatively approximate the liveness of heap
objects by reachability i.e. every object that is reachable from
the root set is considered live. Consequently, a large amount
of memory that is reachable but not used further during
execution is left uncollected by the collector.
Earlier attempts at liveness-based garbage collection for

languages supporting structured types were based on anal-
yses that considered arbitrary liveness values, i.e. they as-
sumed that any substructure of the data could be potentially
live. This made the analyses complex and unscalable. How-
ever, functional programs traverse structured data like lists
in identifiable patterns. We identify a set of eight usage pat-
terns that we use as liveness values. The liveness analysis
that accompanies our garbage collector is based on this set;
liveness arising out of other patterns of traversal are conser-
vatively approximated by this set.

This restriction to a small set of liveness values reaps
several benefits – it results in a simple liveness analysis
which scales to much larger programs with minimal loss of
precision, enables the use of a faster collection technique,
and is extendable to higher-order programs.
Our experiments with a purely functional subset of

Scheme show a reduction in the analysis time by orders
of magnitude. In addition, the minimum heap size required
to run programs is comparable with a liveness-based collec-
tor with unrestricted liveness values, and in situations where
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memory is limited, the garbage collection time is lower than
its reachability counterpart.
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1 Introduction
Modern programming languages have been increasingly
adopting automated memory management through garbage
collection because of the safety and precision that it offers.
Functional languages, where all memory is dynamically al-
located on the heap and accessed through references from
the stack, have always had garbage collectors as an essen-
tial part of their runtime support. Therefore, it is important
to investigate possibilities of increasing the effectiveness of
garbage collection, especially for use in functional program-
ming languages. Most garbage collectors work by marking
heap cells that are reachable from the activation stack and
registers (called the root set) and collecting unmarked cells
as garbage. However, studies across functional programming
languages [3, 15, 22] have shown that programs often allo-
cate considerable amount of memory that remains reachable
beyond their last use, i.e. even after they cease to be live. Thus
a liveness-based garbage collector (LGC) can be expected
to collect more garbage in the same program state than a
reachability based collector (RGC). Use of a LGC results in
several benefits—programs run with lesser memory, there
are fewer collections, and, in the case of copying collectors,
which copy useful cells instead of garbage, the collections
are, on the average faster, since fewer memory cells have
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to copied. Therefore, not only do programs run with lesser
heap space, they often run in lesser time.

The primary reason why LGCs have not found acceptance
in spite of their claimed and empirically demonstrated bene-
fits [9] is the difficulty of liveness analysis itself1. When the
analysis involves scalars only, liveness has two values—may-
be-live or dead. When the language supports structured data,
as it does in the case of functional programming languages
with algebraic data types, any reasonably precise analysis has
to go beyond this binary classification and identify parts of
the structure that are live. Liveness of structured data is com-
monly represented by sets of paths in the heap [3, 11, 12, 17].
These paths represent parts of the data that can be potentially
traversed in the future. However, manipulating arbitrary sets
of paths in an analysis that also strives for precision is cum-
bersome, and the resulting methods do not scale to programs
consisting of more than a few functions. The complexity of
analysis also inhibits analysis of programs with higher order
functions, a staple of most functional programs. Additionally,
since the garbage collector has to refer to liveness of root set
variables at runtime, the complexity of liveness values and
their representation adds overheads to the garbage collection
algorithm. This partially nullifies the apparent advantages
of a liveness based collection. Finally, the storage of liveness
data has its own overheads, as this information has to be
stored for every potential garbage collection point.
It is our observation that most functional programs that

use datatypes such as lists and trees access the heap in regular
identifiable patterns. Therefore, in this paper, we restrict
ourselves to a small fixed set of liveness values, each value
representing a common pattern of heap accesses. All other
values of liveness are safely approximated to a value from
this fixed set. This simplifies liveness analysis and leads to
dramatic improvements in the scalability of the method. In
addition, it also allows us to handle higher-order functions.
While the approximation introduced could have led to a
reduction in the collected garbage, we largely make up for
the loss in precision in two ways, both attributable to our
choice of the small fixed set of liveness values.
Firstly, for the body of a function, we maintain separate

liveness information for each distinct calling context, where
the context includes the liveness value at the call-site. This
is different from most analyses2. We exploit this added pre-
cision by maintaining the calling context at runtime, and
using the liveness corresponding to the context in case of a
garbage collection in the body of the function.

1[9] obtained their liveness information from program traces and not from
a static analysis.
2While most analyses avoid infeasible interprocedural paths by maintain-
ing separate information regarding call-sites in their calling context, the
analysis information (the dataflow values) at the call-sites are generally not
part of the calling context and are merged while analysing the body of a
function. [20] is one of the few exceptions.

Secondly, our garbage collector has a marking scheme that
leverages the fact that the liveness values can be ordered by
inclusion. We use this fact in two ways: First we are able to
avoid a drawback of most liveness based collectors, namely
repeated revisits to the samememory locationwhile marking.
And secondly, we are able do a breadth first traversal during
marking, thereby avoiding the stack-space cost of a depth
first search.

A Motivating Example. As a motivating example, con-
sider the program shown in Figure 1 written in a restricted
subset of Scheme. The program defines two functions, append
(lines 1-8) and main (lines 9-13). The function append con-
catenates its list arguments, and main creates a pair of lists
using makelist (definition omitted) and uses append to con-
catenate the pair. The labels denoted by 𝜋 that annotate some
of the expressions refer to program points and are not part
of the program. Semantically, a program point represents an
instant of time just before the execution of the expression
that it labels.

For concreteness, assume that the list x passed to append
from main has four elements indicated by the triangles A,
B, C and D in that order (Figure 2). The reference to this
list from the activation frame AF1 is called x1; we differenti-
ate between incarnations of the same variable in different
function calls using subscripts. The triangles in the figure
indicate structures whose details are not important. Rect-
angles indicate cons cells, the basic building blocks of lists
with pointers to the head (car) and the tail (cdr) of the list.
The crossed rectangle is an empty list.

The snapshot in the figure follows a sequence of events in
whichmain calls append, and append, in turn, calls itself re-
cursively four more times, of which the last three calls have
returned. As a result, the last two elements of x are appended
to the list y and the result bound to t (the t2 incarnation in
AF2). Also assume that the currently active call to append
has progressed further and invoked the cons operation at
line 7. If this operation, which requires a fresh cons cell to be
allocated, fails because the allocator has run out of memory,
the garbage collector is invoked. At this time, the topmost
activation frame, AF2, on the stack contains references repre-
sented by the set of variables {x2, y2, d2, t2, a2}, and the next
frame, AF1, contains the set {x1, y1, d1}. In garbage collection
parlance, these are called root set variables. Note that c is
bound to a boolean value and not a reference.
Our liveness-based garbage collector begins a traversal

from, say, the topmost frame AF2. It consults the liveness
of the root set variables at program point 𝜋4, because this
is where the program will resume after garbage collection.
Our liveness analysis would have discovered the liveness of
the root set variables: x2, y2 and d2 as “not live” (denoted ⊥)
as they do not appear in the function body after 𝜋4, and the
liveness of t2 and a2 as “fully live” (denoted⊤), which means
that all cons cells reachable from these variables are likely to
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1 (define (append x y)
2 (let c← (null? x) in ; if x is empty
3 (if c (return y) ; return y
4 (let d← (cdr x) in ; else bind d to tail of x
5 (let t← (append d y) in ; and t to (append d y)
6 𝜋3: (let a← (car x) in ; bind a to head of x
7 𝜋4: (let ans← (cons a t) in ; return a list
8 (return ans)))))))) ; with head a, tail t
9 (define (main)
10 (let p← (makelist . . . ) in ; make a list and bind to p
11 𝜋1: (let q← (makelist . . . ) in ; similarly for q
12 𝜋2: (let final← (append p q) in
13 (return final))))) ; return (append p q)

Figure 1. An example annotated program to illustrate
our method.

x1 t2

x2, d1

E

d2

...

A

B

C

D

F

G

H

y1, y2

x1
y1

c1 = 𝐹𝑎𝑙𝑠𝑒

d1
x2
y2

c2 = 𝐹𝑎𝑙𝑠𝑒

d2
t2
a2

AF1

AF2

Figure 2. A snapshot of the stack and the heap during
execution. Stack references and heap data are assumed to
be connected through common variable names instead of
arrows. Only the activation frames of append are shown.

be used in the future. This is understandable since both these
variables and the structures reachable from them are part
of the result of the program, and we assume that the agent
that invoked this program would use the result in its entirety.
Assuming that the underlying garbage collector is a copying
collector (though the same idea can also be replayed on other
collectors), it would scavenge all the cells in the structures B,
C and D, the cons cells F, G and H, and the entire structure
under H. Similarly, for garbage collecting the root set in
AF1, the liveness at program point 𝜋3 is consulted. This is
because 𝜋3 is the program point where the call corresponding
to AF1 would resume after the return of the inner call to
append. Because of the expression (car x) that occurs in the
function after 𝜋3, the liveness analysis will determine that
the cell pointed by x1 and the whole substructure under its
car to be live. We denote this pattern of liveness ("root-and-
car" live) as ⊤0𝜖 . The variables d1 and y1 on the other hand
have ⊥ as their liveness values. Traversal from x1 results
in the scavenging of E and all the cells in A. The heap data
that will be scavenged in this round of garbage collection
are indicated by shading, the remaining cells that are not
shaded, while reachable, can be garbage collected and reused
for subsequent allocation.

This example shows the benefits of liveness-based garbage
collection. In fact, a reachability based collector would not
have been able to reuse any of the cons cells of the original
lists and would have required four extra cells to append the
two lists. Carried to its limit, if we can tolerate a garbage
collection for every cons cell allocated by the program, then
the two lists, however long, can be appended entirely by
reusing the cells of the original lists.
This example uses just three liveness values, ⊥, ⊤ and
⊤0𝜖 . Our complete set consists of five more liveness values.
As an example of yet another liveness value, consider a list
passed to a function that calculates its length. Such a list is

traversed without touching any of the elements. We denote
such a liveness value ("spine-only live") as 1∗. The complete
set of liveness values that we use is described in Section 2.

The main contributions of the paper are:
1. We propose a liveness-based garbage collection method

for a restricted and pure subset of Scheme that allows
higher order functions and has lists as the primary data
structure.

2. The garbage collection relies on a liveness analysis that
is simple and scalable. The scalability derives from our
choice of a small fixed set of liveness values that embodies
common patterns of heap traversal. Interestingly, experi-
ments on our benchmarks demonstrate that the limited
set of liveness values is able to capture heap liveness with
a precision that is comparable to a previous method [3]
that employs arbitrary liveness values.

3. The small set of liveness values allows us to separate
out the liveness of function bodies based on contexts. The
context information is carried over to runtime at negligible
space costs. However, it enhances the precision of liveness
analysis enabling more cells to be identified as garbage.

4. Our choice of liveness patterns also enables the design
of a garbage collection mechanism that avoids revisits of
memory cells. It also enables breadth-first traversal of the
heap, saving the space-cost of a depth-first traversal.

5. We have implemented an interpreter and a copying collec-
tor based on our ideas. Our experiments confirm that com-
pared to to an LGC based on arbitrary liveness patterns,
our analysis is orders of magnitude faster, comparable in
precision and in the number of garbage collections and
on the average faster.
However, our study also has its limitations:

1. As mentioned earlier, our method in its current form is
limited to lists, and because lists in Scheme are heteroge-
neous, also to binary trees. Lists and trees are widely used
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𝑝 ∈ Prog ::= 𝑑1 . . . 𝑑𝑛 𝑒main — program
df ∈ 𝐹𝑑𝑒 𝑓 ::= (define (𝑓 𝐺1 . . . 𝐺𝑚 𝑥1 . . . 𝑥𝑛) 𝑒𝑓 ) — function def

𝑒 ∈ Expr ::=

(if 𝑥 𝑒1 𝑒2) — conditional
(let 𝑥 ← 𝑎 in 𝑒) — let binding
(return 𝑥) — return from function

𝑎 ∈ App ::=



𝑘 — constant (numeric or nil)
(cons 𝑥1 𝑥2) — constructor
(car 𝑥) — selects first field of cons
(cdr 𝑥) — selects second field of cons
(null? 𝑥) — returns true if x is nil
(+ 𝑥1 𝑥2) — generic arithmetic
(𝑓 𝑔1 . . . 𝑔𝑚 𝑥1 . . . 𝑥𝑛) — function application

(a)

Demand Set of
access paths

⊥ ∅
𝜖 {𝜖}
0𝜖 {𝜖, 0}
1𝜖 {𝜖, 1}
1∗ {𝜖, 1, 11, . . .}
⊤0𝜖 {𝜖} ∪ 0(0 + 1)∗
⊤1𝜖 {𝜖} ∪ 1(0 + 1)∗
⊤ (0 + 1)∗

(b)

⊤

⊤1𝜖⊤0𝜖

1∗

1𝜖0𝜖

𝜖

⊥

(c)
Figure 3. (a) The syntax of the language. (b) Demands and their meaning. (c) The lattice of demand patterns ordered by
inclusion.

in functional programs. Other data types in our bench-
marks were encoded in terms of lists.

2. While the chosen liveness values have been surprisingly
effective for the programs considered, we do not know
whether these are general enough to serve a wider range
of benchmarks: (i) programs with possibly different heap
traversal patterns, (ii) programs using different algebraic
data types, and (iii) programs that are larger in size.

2 The Target Language
Figure 3(a) shows the target language. It is an eager, higher-
order language with a syntax similar to Scheme. For ease
of presentation, we restrict the language to Administrative
Normal Form (ANF) [23]. In this form, function calls can only
have variables as arguments. To avoid dealing with scope-
shadowing, we assume that all variables in a program are
distinct. Neither of these restrictions affects the expressibility
of our language. As mentioned earlier, we sometimes use a
label 𝜋 to refer to the program point before an expression 𝑒 ,
such as 𝜋:𝑒 . However the label is not part of the language.
A program in our language is a collection of function

definitions followed by a call to a distinguished function
called main. Applications (denoted by the syntactic cate-
gory App) consist of functions or operators applied to their
arguments. Constants are regarded as 0-ary functions. Ex-
pressions (Expr) are either an if expression, a let expression,
or a return expression. A let expression (let 𝑥 ← 𝑎 in 𝑒)
creates a local binding for 𝑥 and evaluates the expression 𝑒

with this binding. The return keyword is used to mark the
end of a function.
All functions are named, the language does not support

lambda expressions. However, functions can be higher-order,
i.e. they can take other functions as arguments. In the func-
tion definition (define (𝑓 𝐺1 . . . 𝐺𝑚 𝑥1 . . . 𝑥𝑛) 𝑒𝑓 ), 𝐺1 to 𝐺𝑚

are function parameters, 𝑥1 to 𝑥𝑛 are non-function parame-
ters, and 𝑒𝑓 is the function body. Functions have to be fully
applied, they cannot be applied to some but not all of their
arguments. Partial application is allowed in many functional
languages (e.g. Haskell), but not in Scheme. However, while
describing liveness analysis, we shall refer to partial appli-
cations such as (𝑓 𝑔1 . . . 𝑔𝑚). This is a first order function
that has been derived by applying a higher-order function
to all and only its function arguments. Note that partial ap-
plications will be used only to describe the analysis. It is not
permitted by the language and cannot occur in programs.

3 Liveness and its Analysis
A scalar variable is live if there is a possibility of its value be-
ing used in future computations and dead if it is definitely not
used. In contrast, variables that are bound to heap-allocated
structured data need a richer model than the may-be-live or
dead model of classical liveness—a model which talks about
future accesses of parts of a structure. In this paper, we re-
strict ourselves to lists. Borrowing notations from [3], we
represent an access using the car selector by 0 and the cdr
selector by 1. An access path is any sequence of selectors
including the empty sequence 𝜖 . Given a structure, a demand
is a set of access paths that represent how the structure is
possibly accessed. As an example, if 𝑥 is a variable with value
(cons 1 (cons 2 3)). then the accesses of the values in the
substructure (cons 2 3) with respect to 𝑥 is given by the
demand {𝜖, 1, 10, 11}. The access paths in this demand start
with the root cons cell of 𝑥 (represented by 𝜖), the path to
access the cons cell forming the root of (cons 2 3) (repre-
sented by 1), and the paths to the leaves 2 and 3 (10 and 11).
Notice that demands are prefix-closed; a node in a structure
cannot be accessed from a root-set variable without going
through its ancestors.
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𝜎

𝐸 (𝜎) ⊥ 𝜖 0𝜖 1𝜖 1∗ ⊤0𝜖 ⊤1𝜖 ⊤
𝜖 ∪ 0𝜎 𝜖 0𝜖 ⊤0𝜖 ⊤0𝜖 ⊤0𝜖 ⊤0𝜖 ⊤0𝜖 ⊤0𝜖
𝜖 ∪ 1𝜎 𝜖 1𝜖 ⊤1𝜖 ⊤1𝜖 1∗ ⊤1𝜖 ⊤1𝜖 ⊤1𝜖
0̄𝜎 ⊥ ⊥ 𝜖 ⊥ ⊥ ⊤ ⊥ ⊤
1̄𝜎 ⊥ ⊥ ⊥ 𝜖 1∗ ⊥ ⊤ ⊤
Figure 4. The approximation function S.

While a demand can in general be an arbitrary set of access
paths, recall that the claim of this paper is that restriction
to a carefully chosen small set of demands makes liveness
analysis more effective with only marginal loss of precision.
Towards this we have chosen the following set of demands
Σ = {⊥, 𝜖, 0𝜖 , 1𝜖 , 1∗,⊤0𝜖 ,⊤1𝜖 ,⊤}. These correspond to the sets
of access paths shown in Figure 3(b). These demands form a
lattice that is ordered by set inclusion, and the join operation
on this lattice is denoted by ⊔. Any other demand that may
arise during liveness analysis is approximated by a demand
from this fixed set Σ. Notice that each of the sets is prefix
closed. The element 0𝜖 , for example, is a demand that denotes
the set of access paths {𝜖, 0} and not simply {0}.

A liveness of a variable at a program point is a demand that
approximates all possible future accesses of the data bound to
that variable. A variable 𝑥 having a liveness of 0𝜖 at program
point 𝜋 means that future accesses to 𝑥 starting from 𝜋 are
limited to the root of the structure of 𝑥 and (the referent
of) its car field. A liveness environment is a mapping from
variables to demands, for example {𝑥 ↦→ 0𝜖 , 𝑦 ↦→ 𝜖, 𝑧 ↦→ ⊥}.
The liveness of 𝑧 ↦→ ⊥ indicates that 𝑧 is dead. Note that we
use the empty sequence of selectors 𝜖 to stand for the root
of a structure. Thus base values such as integers have 𝜖 as
the only substructure.
Access paths are denoted by 𝛼 and demands by 𝜎 . Given

two access paths 𝛼1 and 𝛼2, we use 𝛼1𝛼2 to denote their
concatenation. We extend this notation to the concatenation
of a symbol with a demand: 0𝜎 is a shorthand for {0𝛼 |
𝛼 ∈ 𝜎}. However the set of access paths represented by 0𝜎
may not be exactly representable in Σ and may need to be
approximated by the least element in the lattice of demands
that contains it. This approximation is done by the function
S. Figure 4 defines S for all possible demand expressions
𝐸 (𝜎) that can be encountered during liveness analysis.

3.1 Liveness Analysis
Liveness analysis determines the liveness environment, i.e.
the mapping of variables to demands, at each program point.
The analysis is described in terms of the three functions A,
L and FS shown in figure 5. Given a demand 𝜎 representing
the future uses of an application, the function A returns a
liveness environment that describes the uses of the variables
in the application. L plays a similar role for an expression—
given a demand, it returns a liveness environment for the
free variables of the expression. BothA and L are backward

analyses—they transform a demand on the result of an ap-
plication or an expression to demands on their arguments.

We start by explainingA. Consider the application (car 𝑥)
with a demand 𝜎 . A program accessing 𝜎 part of (car 𝑥) has
to start with the root of 𝑥 , select the car, and then access 𝜎
part of the resulting structure. Thus the set of paths that are
accessed relative to 𝑥 is 𝜖 ∪ 0𝜎 . However, the demand 𝜖 ∪ 0𝜎
may not be representable in our domain of patterns and
may have to be approximated by S. This gives the liveness
environment of (car 𝑥) as {𝑥 ↦→ S(𝜖∪0𝜎)}. The application
(null? 𝑥) produces the rule {𝑥 ↦→ 𝜖} because a list can be
tested for nullity by just accessing its root cell. Similarly, a
scalar is represented by a single (root) cell which contains its
value. Finally, to evaluate (+ 𝑥 𝑦) for any demand, including
⊥, only the roots of 𝑥 and 𝑦 have to be accessed. Thus the
liveness environment of (+ 𝑥 𝑦) is {𝑥 ↦→ 𝜖,𝑦 ↦→ 𝜖}3.
To explain the rule for cons, notice that a demand of 0𝜖

(or {𝜖, 0} in expanded form) on (cons 𝑥 𝑦) means that future
uses of (cons 𝑥 𝑦) will only access the root and the cell
obtained by a car selection. Since car of (cons 𝑥 𝑦) is 𝑥
itself, it follows that the demand on 𝑥 is 𝜖 . Generalising
this argument, if the demand on (cons 𝑥 𝑦) is 𝜎 , then the
demand on 𝑥 is {𝛼 | 0𝛼 ∈ 𝜎}. Denoting {𝛼 | 0𝛼 ∈ 𝜎} as 0̄𝜎
and approximating this demand using S, we get the liveness
of 𝑥 as S(0̄𝜎). A similar reasoning gives the demand on 𝑦 as
S(1̄𝜎), where the symbol 1̄ is defined as 1̄𝜎 = {𝛼 | 1𝛼 ∈ 𝜎}.
Observe that for the same demand 0𝜖 , the demand on 𝑦

is S(1̄0𝜖 ) or ⊥, as it should be. The behaviour of A for a
function call will be explained after we describe the function
L.
Similar to A, the function L transforms a demand on an

expression to a liveness environment involving the free vari-
ables in the expression. The rule for (return 𝑥) is obvious.
The liveness environment of (if 𝑥 𝑒1 𝑒2) is the pointwise
union of the liveness environment that arises out of testing
the condition 𝑥 , and the liveness environments of 𝑒1 and 𝑒2.
The liveness environments of (let 𝑥 ← 𝑎 in 𝑒) is the point-
wise union of the liveness environments of the application
𝑎 and the expression 𝑒 . The liveness environment L1 of 𝑒 is
determined with respect to the demand 𝜎 on the let expres-
sion, and the liveness environment of 𝑎 is determined with
respect to the demand on 𝑥 in L1. The liveness of 𝑥 is erased
from the union because the scope of 𝑥 is local to 𝑒 . This is
similar to the backward propagation of liveness across an
assignment 𝑥 = 𝑒 in classical dataflow analysis of imperative
languages.
The liveness environment arising from a function call
(𝑓 𝑔1 . . . 𝑔𝑚 𝑥1 . . . 𝑥𝑛) is described using the function FS.

3Interestingly, the situation would have been different for a lazy language,
which does not evaluate an expression unless required. For the ⊥ demand,
the liveness environment for (+ 𝑥 𝑦) would have been {𝑥 ↦→ ⊥, 𝑦 ↦→ ⊥}.
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A :: (App × Demand) → LivenessEnvironment

A(𝜅, 𝜎) = ⊥, for all constants 𝜅 including nil
A((null? 𝑥), 𝜎) = {𝑥 ↦→ 𝜖}
A((+ 𝑥 𝑦), 𝜎) = {𝑥 ↦→ 𝜖,𝑦 ↦→ 𝜖}
A((car 𝑥), 𝜎) = {𝑥 ↦→ S(𝜖 ∪ 0𝜎)}
A((cdr 𝑥), 𝜎) = {𝑥 ↦→ S(𝜖 ∪ 1𝜎)}

A(𝜋:(cons 𝑥 𝑦), 𝜎) = {𝑥 ↦→ S(0̄𝜎), 𝑦 ↦→ S(1̄𝜎)}
A((𝑓 𝑔1 . . . 𝑔𝑚 𝑥1 . . . 𝑥𝑛), 𝜎) =

⋃𝑛
𝑖=1{𝑥𝑖 ↦→ 𝜎𝑖 },where
(𝜎1, . . . , 𝜎𝑛) = FS ((𝑓 𝑔1 . . . 𝑔𝑚), 𝜎)

L :: (Exp × Demand) → LivenessEnvironment

L((return 𝑥), 𝜎) = {𝑥 ↦→ 𝜎}
L((if 𝑥 𝑒1 𝑒2), 𝜎) = {𝑥 ↦→ 𝜖}*L(𝑒1, 𝜎)

*L(𝑒2, 𝜎)
L((let 𝑥 ← 𝑎 in 𝑒), 𝜎) = L,where

L1 = L(𝑒, 𝜎),
𝜎 ′ = L1 (𝑥),
L2 = A(𝑎, 𝜎 ′), and
L = (L1

*
L2) − {𝑥 ↦→ L1 (𝑥)}

FS :: (FirstOrderFunc × Demand) → (Demand1 × . . . × Demandn))

FS ((𝑓 𝑔1 . . . 𝑔𝑚), 𝜎) = (L(𝑥1), . . . , L(𝑥𝑛)),where
𝑓

def
= (define (𝑓 𝐺1 . . . 𝐺𝑚 𝑥1 . . . 𝑥𝑛) 𝑒f ), and

L = L(𝑒𝑓 [𝐺1/𝑔1, . . . ,𝐺𝑚/𝑔𝑚], 𝜎)
Figure 5. Liveness Analysis

FS takes a first-order function (𝑓 𝑔1 . . . 𝑔𝑚)4 and a demand
𝜎 , and returns a tuple of demands (𝜎1, . . . , 𝜎𝑛). The function
A maps this tuple to the variables 𝑥1 . . . 𝑥𝑛 to yield the live-
ness environment of the application (𝑓 𝑔1 . . . 𝑔𝑚 𝑥1 . . . 𝑥𝑛).
(𝜎1, . . . , 𝜎𝑛) is computed by applying L to the body 𝑒𝑓 of 𝑓
after substituting the formal parameters 𝐺1 . . . 𝐺𝑛 by con-
crete functions 𝑔1 . . . 𝑔𝑚 . FS yields an equation for each
function 𝑓 and each tuple of functions (𝑔1 . . . 𝑔𝑚) that 𝑓 may
be called with in the program. We have used the control flow
analysis from a well-known method for firstification [19] to
determine all possible concrete functions that a higher order
function may be called with.
The equations derived from FS are, in general, mutu-

ally recursive, and are solved by computing the fixed point
of a series of approximations. We denote the 𝑛th approxi-
mation of FS applied to (𝑓 𝑔1 . . . 𝑔𝑚) as FS𝑛 (𝑓 𝑔1 . . . 𝑔𝑚).
FS0 (𝑓 𝑔1 . . . 𝑔𝑚) is the function 𝜆𝜎.(⊥, . . . ,⊥), the function
thatmaps any demand to a tuple of empty demands.FS𝑛 (𝑓 𝑔1
. . . 𝑔𝑚) is computed from FS𝑛−1 (𝑓 ′ 𝑔′1 . . . 𝑔′𝑚), where (𝑓 ′ 𝑔′1
. . . 𝑔′𝑚 𝑦1 . . . 𝑦𝑘 ) is a function call encountered during the
computation of L(𝑒𝑓 [𝐺1/𝑔1, . . . , 𝐺𝑚/𝑔𝑚]). In practice we
use these approximation for computing FS𝑛 (𝑓 𝑔1 . . . 𝑔𝑚) for
each possible demand 𝜎 in Σ and cache the results to be used
for the computation of liveness for the body of functions.

4As mentioned earlier, the first order function is, in general, obtained by
partially applying a higher order function to its function parameters.

The compute intensive part of the analysis is the iterative
calculation of FS. We use a work-list based algorithm to
find the fixed point for FS. The work-list is initialised with
all function definitions. For any function, say 𝑓 , if FS𝑛 ≠

FS𝑛−1, all functions which call 𝑓 are pushed onto the work-
list.

We calculate a bound on the number of worklist iterations
with the following argument. For a particular 𝜎 , FS𝑛 ≠

FS𝑛−1 if there exists an argument 𝑥𝑖 such that L𝑛 (𝑥𝑖 ) ≠

L𝑛−1 (𝑥𝑖 ), where L is as defined within the equation for FS
in Figure 5. Note that for this iterative procedure, L is a
monotonically increasing function and hence the number of
updates is bounded by the height of the lattice ℎ. Extending
this argument to all functions, it follows that FS can update
atmost 𝑘𝑁𝑓 × ℎ times per demand, where 𝑘 is the average
number of arguments in a function, before reaching the fixed
point. The number of functions which call any function is
loosely bounded by 𝑁𝑓 , which proves that the worklist can
have atmost 𝑘𝑁𝑓 × ℎ × 𝑁𝑓 pushes (and consequently, pops)
per demand, or 𝑘𝑁 2

𝑓
×ℎ× 𝑙 in total where 𝑙 is |Σ|, the number

of lattice points. This is far superior in comparison to the
𝑂 (𝑁𝑓 .2𝑁𝑓 ) complexity of the liveness-based method with
arbitrary precision in [3]. The 2𝑁𝑓 factor arises from a NFA to
DFA conversion that is a part of the method. We substantiate
this result with experiments in section 5.
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3.2 Liveness Propagation
While the functions A and L describe the liveness of an
application or an expression with respect to an arbitrary
symbolic demand 𝜎 , for garbage collection we need to com-
pute the concrete liveness environment at program points.
In particular, we have to compute the liveness environment
only at certain distinguished program points, called gc-points,
where the garbage collector can be invoked. The liveness en-
vironments at these points are cached for use during garbage
collection. We shall, for the moment, assume that a collec-
tion of program points called gc-points has already been
identified, and define these later.
We now describe how to calculate the liveness environ-

ments at gc-points.
1. We begin by calculating L(𝑒main,⊤), i.e. the liveness envi-

ronment of 𝑒main, the body ofmain, for the demand⊤. The
demand on 𝑒main is ⊤, because we assume that the entire
result returned by the program would be required. While
doing this we propagate liveness to the entire program in
the following manner:
a. Each timewe computeL((𝑓 𝑔1 . . . 𝑔𝑚 𝑥1 . . . 𝑥𝑛), 𝜎), we

also calculate the liveness environment of (𝑒𝑓 [𝐺1/𝑔1,

. . . ,𝐺𝑚/𝑔𝑚]) for the same demand𝜎 . The pair ((𝑔1, . . .

𝑔𝑚), 𝜎) is called the calling context for the call ((𝑓 𝑔1
. . . 𝑔𝑚 𝑥1 . . . 𝑥𝑛).

b. Consider a gc-point 𝜋 in the body of 𝑓 . While comput-
ing L(𝑒𝑓 [𝐺1/𝑔1, . . . ,𝐺𝑚/𝑔𝑚], 𝜎), we merge the live-
ness environments at 𝜋 arising out of different calls
only if their calling contexts are the same. Notice that
liveness at a program point for different calls to 𝑓 are
not merged unconditionally as is done in most inter-
procedural analyses. One of the key aspects of our
method is that we track the calling context at runtime.
As a consequence, our garbage collector is guided by
a more precise analysis.

c. The liveness environment at gc-points is recorded in a
table called gctable that is consulted during garbage
collection. gctable[𝜋, 𝑓 , (𝑔1, . . . , 𝑔𝑚), 𝜎] contains the
merged liveness environment at 𝜋 , for all calls to 𝑓

with the context ((𝑔1, . . . 𝑔𝑚), 𝜎).

An Example. Consider the same append function now
expressed as an instance of a higher order function foldr (also
called reduce in some languages). The function append is
now defined by instantiating foldr to appropriate arguments.
As before,main constructs a pair of lists p and q, and appends
them. There are six garbage collection points 𝜋1-𝜋6. Of these,
we would like to know the liveness environments at 𝜋2, 𝜋3
and 𝜋4. We first compute FS for each first order function
(either declared or made first order by applying a higher
order function to its function parameters). For the gc-points
of interest, these are append and foldr. In fact, since append
calls foldr with a swap of its non-function arguments, it

1 (define (foldr G id l)
2 (let c← (null? l) in
3 (if c (return id)
4 (let d← (cdr l) in
5 (let t← (foldr G id d) in
6 𝜋3: (let a← (car l) in
7 𝜋4: (let ans← (G a t) in
8 (return ans))))))))
9 (define (append x y)
10 (let res← (foldr cons y x) in
11 𝜋5: (return res)))
12 (define (main)
13 (let p← (makelist . . . ) in
14 𝜋1: (let q← (makelist . . . ) in
15 𝜋2: (let final← (append p q) in
16 𝜋6: (return final)))))

Figure 6. Higher order version of append. It uses the higher
order function foldr

is enough to analyse foldr and swap the elements of the
resulting tuple.
A control flow analysis reveals that the only function

that can be passed for G in foldr is cons. Thus one has to
solve for FS ((foldr cons), 𝜎) for all possible values of 𝜎5.
In the exposition below, if any entity 𝐸 has a tuple as a value,
we use the notation ⟨𝐸⟩𝑖 to denote the 𝑖 th element of the
tuple. The FS rule directly yields the following equation for
FS ((foldr cons), 𝜎):
FS ((foldr cons), 𝜎) = (L(id), L(l)),

where L = L(𝑒foldr [G/cons], 𝜎)
This, in turn, expands into the following:

FS ((foldr cons), 𝜎) = (𝜎id, 𝜎l),where
𝜎id = 𝜎 ⊔ ⟨FS ((foldr cons),S(1̄𝜎))⟩1
𝜎l = 𝜖 ⊔

S(𝜖 ∪ 1⟨FS ((foldr cons),S(1̄𝜎))⟩2) ⊔
S(𝜖 ∪ 0S(0̄𝜎))

Let us explain the equation for 𝜎l. The demands on the
three lines joined by ⊔ correspond to the livenesses of l
occurring in lines 2, 4 and 6. The liveness 𝜖 is directly from
the null? rule. The liveness of ans is 𝜎 because of the return
rule, and this is transformed to a liveness of S(0̄𝜎) for a and
S(1̄𝜎) for t by the let and the cons rules. The liveness of
a now becomes the demand on (car l) at line 6, and this
gives the liveness of this occurrence of l as S(𝜖 ∪ 0S(0̄𝜎)).
The liveness of t, on the other hand, is propagated to the
second (non-function) argument of foldr, namely d, to give a
liveness of ⟨FS ((foldr cons),S(1̄𝜎))⟩2 for d. This is further
propagated through (cdr l) to give the liveness of l at 3 as
S(𝜖 ∪ 1⟨FS ((foldr cons),S(1̄𝜎))⟩2).

5We shall shortly see that solving for FS ( (foldr cons),⊤) is enough.
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Let us calculate the value of FS ((foldr cons), 𝜎), when
𝜎 = ⊤. We have
FS0 ((foldr cons),⊤) = (⊥,⊥), and
FS1 ((foldr cons),⊤) = (𝜎1

id, 𝜎
1
l),where

𝜎1
id = ⊤ ⊔ ⟨FS0 ((foldr cons),S(1̄⊤))⟩1

= ⊤ ⊔ ⟨FS0 ((foldr cons),⊤)⟩1
= ⊤ ⊔ ⊥ = ⊤, and

𝜎1
l = 𝜖 ⊔ S(𝜖 ∪ 1⟨FS0 ((foldr cons),S(1̄⊤))⟩2)

⊔ S(𝜖 ∪ 0S(0̄⊤))
= 𝜖 ⊔ S(𝜖 ∪ 1⟨FS0 ((foldr cons),⊤)⟩2)
⊔ S(𝜖 ∪ 0⊤)

= 𝜖 ⊔ S(𝜖 ∪ 1⊥)) ⊔ ⊤0𝜖
= 𝜖 ⊔ S(𝜖 ∪ ⊥) ⊔ ⊤0𝜖 = 𝜖 ⊔ 𝜖 ⊔ ⊤0𝜖 = ⊤0𝜖

It is clear that the value of 𝜎id converges to ⊤. However,
to find the convergence point of 𝜎l, we iterate once more.
FS2 ((foldr cons),⊤) = (⊤, 𝜎2

l),where
𝜎1

2 = 𝜖 ⊔ S(𝜖 ∪ 1⟨FS1 ((foldr cons),S(1̄⊤))⟩2)
⊔ S(𝜖 ∪ 0S(0̄⊤))

𝜎1
2 = 𝜖 ⊔ S(𝜖 ∪ 1⟨FS1 ((foldr cons),⊤)⟩2) ⊔ ⊤0𝜖

𝜎1
2 = 𝜖 ⊔ S(𝜖 ∪ 1⊤0𝜖 ) ⊔ ⊤0𝜖 = 𝜖 ⊔ ⊤1𝜖 ⊔ ⊤0𝜖 = ⊤

Since 𝜎l converges to ⊤, FS2 ((foldr cons),⊤) = (⊤,⊤).
Armed with this information, we calculate the liveness envi-
ronments at the three gc-points 𝜋2, 𝜋3 and 𝜋4 as follows:
1. The liveness at 𝜋2 is {p ↦→ FS1 ((append),⊤), q ↦→ FS2

((append),⊤)}. This is the same as {p ↦→ FS2 ((foldr cons),
⊤), q ↦→ FS1 ((foldr cons),⊤)} and further simplifies to
{p ↦→ ⊤, q ↦→ ⊤}.

2. The liveness at 𝜋3 is {a ↦→ S(0̄⊤), t ↦→ S(1̄⊤), l ↦→
S(𝜖 ∪ S(0̄⊤)). This simplifies to {𝑎 ↦→ ⊤, t ↦→ ⊤, l ↦→
⊤1𝜖 }.

3. The liveness at 𝜋4 is {a ↦→ ⊥, t ↦→ ⊥, l ↦→ ⊥, ans ↦→ ⊤}.
The liveness of 𝑙 at 𝜋3 and 𝜋4 are the same as in our infor-

mal description in Section 1.

GC-Points. Before proceeding further we explain what
gc-points are. As mentioned earlier, these are program points
where a program can potentially resume after pausing for
garbage collection.
1. First consider the template 𝜋1: (let 𝑎 ← (cons 𝑥 𝑦) in 𝑒).

Clearly the garbage collection happens because of the
failed allocation of a cons cell. After garbage collection is
over, the execution resumes at 𝜋1 to complete the evalu-
ation of the let expression. Thus a program point before
a let expression that binds a variable to a cons cell is a
gc-point.

2. Next consider the template (let 𝑎 ← (𝑓 𝑥1 . . . 𝑥𝑛) in 𝜋2: 𝑒).
A garbage collection could potentially take place during
the call to 𝑓 . After garbage collection, the execution will
resume in the current scope at program point 𝜋2. Thus a
program point just after a function call is a gc-point.

A tricky case is the function call 𝜋1: (let 𝑎 ← (𝐺 𝑥1 𝑥2) 𝑖𝑛 𝜋2 :
𝑒), where 𝐺 is a parameter that may be bound to cons. This
is a situation where the idea of a separate liveness analysis

for each calling context comes to use. If the calling context
binds 𝐺 to cons, then the gc-point is identified as 𝜋1, else
it is 𝜋2. Thus gc-point is not a purely syntactic notion but
could also depend on the calling context.

4 The Garbage Collector
We can think of a liveness based traversal as a generalization
of reachability. Given a node 𝑛 in the heap and a demand 𝜎
associated with it, we define a node 𝑛′ to be 𝜎-reachable from
𝑛, if 𝑛′ can be reached from 𝑛 by following an access path in
𝜎 . Thus an RGC traverses all cells that are ⊤-reachable from
the referents of the root set.
Our experimental setup includes an interpreter for the

language shown in Figure 3 along with a single-generational
copying collector. Assume that the program has been paused
for garbage collection. Consider an activation frame in the
stack and assume that it corresponds to the function call
(𝑓 𝑔1 . . . 𝑔𝑚 𝑥1 . . . 𝑥𝑛). The activation frame will contain,
along with other information, references corresponding to
the root set variables 𝑥1 . . . 𝑥𝑛 and the function names 𝑔1
. . .𝑔𝑚 . As additional information, we also maintain the name
of the function 𝑓 itself, the gc-point 𝜋 inside the function
body where the program is paused and also the demand
𝜎 on the function call during analysis. Thus the activation
frame has all information for the garbage collector to con-
sult gctable[𝜋, 𝑓 , (𝑔1, . . . , 𝑔𝑚), 𝜎] and read the liveness of
the root set variables at 𝜋 . This information is used by the
garbage collector for traversal during copying.
LGCs [3, 21] with arbitrary demand patterns suffer from

a drawback over RGCs during runtime. On visiting a mem-
ory cell 𝑛 that has already been marked (i.e. visited before),
an RGC does not initiate further traversals from 𝑛. This is
safe because all cells reachable from 𝑛 would have already
been visited earlier. This property does not hold for LGC.
An earlier visit to 𝑛 with a demand, say 𝜎 , would have re-
sulted in visits to only 𝜎-reachable cells from 𝑛. Since there
is no guarantee that the next visit to 𝑛 will be accompanied
by a demand that is a subset of 𝜎 , LGC methods with arbi-
trary patterns may need to initiate further traversals from
an already visited cell.
With a set of finite demand patterns and an ordering on

them, we are able to address this issue. The garbage collector
creates a sequence of bins for the demand patterns ⊤, 1∗,
1𝜖 , 0𝜖 and 𝜖 , and populates them by variables references in
the root set. The order of the patterns in the sequence is
important. The traversal for garbage collection now takes
place by picking references from the bins in the sequence
above. For example, while traversing a reference from the
bin 1∗, if we visit a marked cell 𝑛, we know that this cell
had been visited earlier with either a 1∗ pattern itself or a
⊤ pattern. Since the 1∗-reachable cells from 𝑛 would have
already been visited earlier, further traversals from 𝑛 are not
necessary. The situation is slightly different however, if we
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reach a marked cell with a 0𝜖 pattern. The marking could
have been due to an earlier arrival with a 1𝜖 or 1∗ pattern,
and neither of these two patterns subsume 0𝜖 (i.e. 0𝜖 @ 1𝜖
and 0𝜖 @ 1∗). Therefore, we have to traverse a single step
from 𝑛, but this step may be redundant if 𝑛 had been visited
earlier with 0𝜖 or ⊤.
For obvious reasons, the demand ⊥ does not have a bin.

Also notice the absence of bins for ⊤0𝜖 and ⊤1𝜖 . If a root set
variable, say 𝑧, has the liveness ⊤0𝜖 , then, while initializing
bins, the reference corresponding to 𝑧 is inserted in the bin
for 0𝜖 and the reference corresponding to (car 𝑧) is inserted
in the bin for⊤. Note that the traversal with very few revisits
was made possible because of a total order amongst the bins
corresponding to the infinite demands 1∗ and ⊤.
A second drawback of LGC addressed in our method is

that we do a breadth-first traversal of the heap, thus avoiding
the space-costs that come from using a stack for depth-first
traversal. Earlier methods that had arbitrary sets of access
paths as demands [3, 21] used an automaton for representing
liveness, and collection involved a joint depth-first traversal
of the heap and the automaton. Our collector uses the prop-
erty that if the liveness 𝜎 of a root set variable is one of the
infinite demands ⊤ or 1∗, then every 𝜎-reachable cell from
this root set variable also has the same demand. So we can
copy these in breadth-first order without having to expend
space to explicitly keep track of their liveness.

The Garbage Collection Algorithm. Algorithm 1 shows
the garbage collection algorithm. As in any other single gen-
eration copying collector, the available memory is divided
into two semispaces, their starting locations denoted by the
variables fromSpace and toSpace. A round of garbage collec-
tion starts with a swap of roles of these variables, so that the
occupied memory starts with fromSpace, from where live
cells are copied into toSpace.
The garbage collector works as follows. The helper func-

tion copy(r) copies the content of r to toSpace if it is not
already copied, and, in any case, returns a pointer to the
copy. The collector function gc picks up root sets in order
of bins. If the current bin corresponds to a demand 𝜎 , then
all cells that are 𝜎-reachable from r are copied into toSpace,
if they are not already copied. The referent of each root in
the bins is copied first, and the rest of the cells that are 𝜎-
reachable from r are either copied within the if (𝜎 == 0𝜖 ) or
in the copy function (for other values of 𝜎). startp is a logical
variable unrelated to garbage collection. Its only role is in
describing an invariant that would be used in arguing the
correctness of the collector.

Correctness of the Algorithm. We use a variation of the
coloring abstraction that is often used to argue about the
soundness of garbage collectors. We colour memory cells as
follows: A cell is black if it and its 𝜎-reachable children have
been copied to toSpace. A cell is grey, if it has been copied
into toSpace, but at least one of its 𝜎-reachable children has

Function gc():
swap(fromSpace, toSpace)
allocp← beginning of toSpace

for each bin 𝜎 𝑖𝑛 {⊤, 1∗, 1𝜖 , 0𝜖 , 𝜖} do
for each root r 𝑖𝑛 𝜎 do

scanp← allocp; startp← allocp
𝑟 ← copy(r)
if 𝜎 == 0𝜖 then

𝑐𝑎𝑟 (r) ← copy(𝑐𝑎𝑟 (r)
scanp← allocp

while scanp < allocp do
if scanp points to a cons cell then

switch 𝜎 do
case ⊤ do

𝑐𝑎𝑟 (scanp) ←
copy(𝑐𝑎𝑟 (scanp))

𝑐𝑑𝑟 (scanp) ←
copy(𝑐𝑑𝑟 (scanp))
scanp←
scanp + size(scanp)

case 1∗ do
𝑐𝑑𝑟 (scanp) ←
copy(𝑐𝑑𝑟 (scanp))
scanp←
scanp + size(scanp)

case 1𝜖 do
𝑐𝑑𝑟 (scanp) ←
copy(𝑐𝑑𝑟 (scanp))
scanp← allocp

case 𝜖 do
scanp← allocp

else
/*scanp points to nil or integer*/
scanp← allocp

Function copy(𝑟):
if r has no forwarding address then

r′← allocp
copy ∗r to ∗r′
allocp← allocp + size(r)
set forwarding address of r as r′

return (forwarding address of r)
Algorithm 1: The garbage collection algorithm

not been copied. Finally, a cell is white if the cell itself has
not been copied to toSpace. The correctness of the algorithm
follows from the following invariant at the beginning of the
while loop:

1. startp ≤ scanp ≤ allocp, and
2. all cells with starting addresses within [startp, scanp),

are black and are 𝜎-reachable from r.
Consider a bin 𝜎 and a root variable r from the 𝜎 se-

lected by the headers of the two for loops. While we do
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not prove the invariant stated above, we show as its conse-
quence that when the while loop terminates, the algorithm
would have correctly copied all cells that are 𝜎-reachable
from r. First notice that just after the termination of the
while loop, scanp = allocp, and thus there are no grey cells.
Now assume to the contrary that there is a cell 𝑛 that is
𝜎-reachable from the root and is not colored black. Since the
root has been copied before the while loop, we can find a cell
in [startp, scanp) with at least one white 𝜎-reachable child.
Thus the color of this cell is grey, which is contradictory to
the loop invariant which says that all cells such that within
[startp, scanp) are black.

5 Experimental Results
To demonstrate the effectiveness of our method, we have
built an interpreter for the target language and integrated it
separately with the following three collectors: Our collector
based on the finite liveness domain Σ (referred to as LGC𝐹 ),
an implementation of the collector based on arbitrary live-
ness values [3] (referred to as LGC𝐴) and a reachability based
garbage collector (referred to as RGC). The hardware plat-
form for our experiments was a third generation 𝑖7 processor
with 8GB RAM. Any difference in the reported timings in [3]
and what we report for the same benchmark is attributable to
two reasons: the input sizes of the benchmark and the hard-
ware platform (both not reported in [3]). The collectors were
benchmarked with programs from various sources including
the standard no-fib suite. In addition, LGC𝐹 was tested with
four medium-sized higher-order programs: Barnes-Hut sim-
ulation, a list based floating point arithmetic program (IEEE
754), a functional parser, and curves—a program to generate
fractals.

Results. The graphs in figure 7 indicate memory usage
patterns of some of the benchmarks. The x-axis measures
progress in execution in terms of the cumulative number
of cells allocated, which we call GC Ticks. The y-axis is the
number of cells in toSpace. The black line denotes the actual
number of live cells at every tick. This metric is computed
by recording the GC-ticks at creation and at last use of each
allocated cell at runtime. Note that the graphs represent
memory usage of programs when run with the heap size
set to the minimum required for execution under RGC. The
saw-tooth nature of the curves is explained by the number of
cells in toSpace growing one-on-one with each GC-Tick and
then instantaneously falling during the release of cells during
garbage collection. A line connecting the lowest points of
the curve for a GC scheme represents the analysed liveness
of the analysis accompanying the scheme

Precision of Liveness and Minimum Heap Require-
ment. Figure 7 shows the precision of liveness analysis. This
shows up as the extent to which the analysed liveness comes

Table 1. Minimum Heap Cells (in bytes) required for execu-
tion under various GC schemes.

RGC LGC𝐹 LGC𝐴

lambda 138340 102500 102500
fft 113500 64502 64502

testgc∗ 143366 12291 41
treejoin 525488 7150 7150
fibheap 254520 13558 13558
nperm 930264 8920 8920
huffman 150041 50029 50023
gc_bench∗ 131071 102401 131071
nqueens 361567 98531 98531

knightstour 508225 307091 307090
lcss 5M+ < 50000 < 50000

paraffins 892090 891194 891194
sudoku 160277 85363 85347
deriv 491462 491446 491446
curves 204000 96000 -
parser 262216 131096 -

barneshut 6830 1530 -
IEEE-754 39360 122 -

close to real liveness during garbage collection. The effec-
tiveness of LGC𝐹 over RGC in identifying live memory is
evident—LGC𝐹 comes much closer to the real liveness curve
than RGC. As expected, the gaps in the curves between anal-
ysed and real liveness for lambda and testgc also show that
liveness analysis in LGC𝐹 is an approximation. The memory
usage plots also show that saw-toothed pattern for LGC𝐹 is
more widely spaced because of fewer GC invocations.

We avoid plottingmemory usage for LGC𝐴, since it is indis-
tinguishable from LGC𝐹 for all benchmarks except testgc.
Thus our restricted set of liveness values captures liveness
almost as precisely as LGC𝐴. The program testgc (Figure 7
(d)), is a notable exception. It is a crafted program with a
irregular memory access pattern that cannot be captured by
our set of liveness values.
Since LGC𝐹 , in general, releases as much memory (and

often more) than RGC during each collection, it is natural to
expect programs executing under LGC𝐹 to run with smaller
heap sizes. This is confirmed by Table 1. The minimum heap
requirements of LGC𝐹 and LGC𝐴 are comparable on most
programs. For the program testgc LGC𝐹 falls short because
of imprecise liveness analysis. Surprisingly, LGC𝐹 performs
better that LGC𝐴 for gcbench, a synthetic program from
the no-fib benchmark suite which creates a tree but does
not use any of its parts. Given the comparable precision of
liveness analysis for both LGC𝐹 and LGC𝐴 for this program,
the superior minheap performance of LGC𝐹 can only be
attributed to the additional precision from the context-based
separation of analysis of function bodies in our method.
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(a) Fast Fourier Transform (b) Lambda

(c) N-Queens (d) TestGC
Figure 7.Memory plots of programs: x-axis is the cumulative number of cons cells allocated and y-axis is the number of cons
cells in toSpace. The black curve represents real liveness, the blue and the orange curves are the number of cells in toSpace for
RGC and LGC𝐹 respectively. The LGC𝐴 curve is indistinguishable from LGC𝐹 for programs (a) to (c). The exception amongst
all benchmarks is testgc shown in (d). The green curve representing LGC𝐴 in this plot reaches real liveness at each GC,
whereas LGC𝐹 does not.

Analysis Time. A comparison of the time taken for live-
ness analysis for the two liveness-based collectors is in Ta-
ble 2. LGCF has much lower analysis time with some exam-
ples showing a difference of several orders of magnitude.
This is expected since, as explained at the end of Section 3.1,
the work-list algorithm of LGC𝐹 with its short lattice height
is computationally much less expensive than the analysis of
LGC𝐴.
Going beyond the table that shows the analysis time of

our benchmark programs, we believe that the analysis will
scale for larger programs for the following reasons. The 𝑁 2

𝑓

term in the theoretical worst case bound of the expensive FS
computation arises out of the assumption that each function

can potentially call every other function in the program.
However, if we make the more reasonable assumption that
the number of functions called by a function is bounded by a
constant, the bound is linear in 𝑁𝑓 . We have experimentally
observed that, during the computation of FS, the number of
iterations per function over all programs in our benchmarks
is less than 10. Similarly, the worst time per iteration over our
benchmark programs is 0.25 ms. Considering these figures
to be representative over arbitrary programs, a realistic yet
conservative estimate of the analysis time for a large program
with 1000 functions is 0.25 ∗ 10 ∗ 1000 = 2.5𝑠𝑒𝑐𝑠 .
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(a) N-Queens (b) Lambda
Figure 8. Time taken by garbage collector vs the amount of heap memory available. In Figure (b) the LGC𝐴 plot is avoided
due to difference in scale.

Table 2. Time taken for compile-time analysis.
LGC𝐹 (in ms) LGC𝐴 (in ms)

lambda 6.38 6067.00
fft 17.24 546.17

testgc 4.32 29.19
treejoin 5.71 3278.70
fibheap 30.53 2049.89
nperm 48.58 174.67
huffman 11.18 1459.72
gc_bench 18.75 7.61
nqueens 3.86 296.11

knightstour 4.90 432.86
lcss 14.59 980.44

paraffins 33.56 3784.40
sudoku 23.52 187162.00
deriv 6.80 327.75
curves 37.40 -
parser 11.44 -

barneshut 152.76 -
IEEE-754 98.52 -

Time for Garbage Collection. The graphs in Figure 8
plot the average garbage collection time (gc-time) for dif-
ferent collectors over a range of heap sizes. The time mea-
surements are accurate modulo the vagaries of capturing
CPU Time. We reiterate the factors that affect gc-time over-
heads in LGC𝐹 . First, as mentioned in Section 4, LGC𝐹 does
a binning operation that incurs the costs of a bucket sort
during garbage collection time. On the other hand, given the
precision of our liveness analysis arrived by several means,
the number of copied cells is generally lower than RGC. In
addition, the number of collector invocations is also lower

for LGC𝐹 . All of these add up to significant gc-time gains for
LGC𝐹 over RGC in memory constrained regions.

In contrast, the regions where memory is abundantly avail-
able, the difference between number of collections is not
significant (in many cases, non-existent) and we find the
benefits diminishing. For systems where memory is readily
available, performing such an analysis is not computation-
ally beneficial and RGC performs better, as seen in Figure 8
lambda.
An issue related to gc-time is the number of redundant

traversals of the heap during collection. This value will be
high if there are repeated heap traversal during a garbage
collection. LGC𝐹 has an advantage over LGC𝐴 in that the
average number of visits per copied cell is much lower (Fig-
ure 9). For LGC𝐹 , this ratio is close to 1, and almost always
matches RGC. Some programs are not represented in this
plot because their LGC𝐴 ratios go beyond scale.
Since our method carries over large amounts of liveness

data from analysis to execution, a natural concern would be
the size of this data. The amount of space needed to store
the analysis data is 𝑁𝑝 ∗ (𝑁𝑙 ∗ (𝑙 + 1)) bytes, where 𝑁𝑝 is the
number of the garbage collection points, 𝑁𝑙 is the average
number of live variables at each garbage collection point
and 𝑙 is the number of points in the lattice. Empirically, the
size of this data is in the range of a few (around 5) KBs
for all programs, with the only outlier being sudoku, which
requires around 20KB.

6 Related Work
There is a substantial body of work related to the the use
of static and dynamic analyses for improving usage of heap
memory. The empirical study in [9], done in the context of
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Figure 9. Ratio of total heap cell visited to total heap cells
collected, both figures cumulative over all GC invocations. A
higher ratio points towards repeated traversal of heap during
collection.

C, C++ and Eiffel, was the first to recommend the use of live-
ness to enhance the effectiveness of garbage collection. The
garbage collector was based on a liveness analysis obtained
from program traces. The authors discovered that heaps of-
ten contained a large number of cells that are reachable but
not live (upto 32%). Subsequent studies by [3, 15, 22, 24] have
confirmed this feature across several languages: Java, Haskell
and Scheme. The conclusion in [9] is that for liveness-based
garbage collection to be effective, one must analyze global
variables with interprocedural analysis. This message is rele-
vant for us since our analysis is interprocedural, and instead
of globals we have heap-allocated data that, like globals, is
shared across different functions.
We first discuss the use of liveness in garbage collection

for imperative languages. The heap safety analysis in [25]
suggests a method for answering queries regarding the safety
of inserting a free statement for a variable or nullifying a
reference at a given location, so that the referent object can be
collected subsequently. The approach in [16] is similar in its
end goals. However, while heap safety analysis merely solves
a decision problem—it answers queries regarding whether a
reference can be nullified at a program point, the approach
in [16] also identifies candidate references which can be
nullified at each program point. Both these studies are in
the context of Java programs. Similar approaches that either
verify the safety of explicitly freed memory or insert memory
freeing statements are [6, 8].
In the space of functional languages, many of the ap-

proaches are aimed at reallocation through analysis followed
by code insertion, also called compile time garbage collec-
tion. The most well known of these is, of course, deforesta-
tion [4, 5, 27]. Deforestation methods essentially identify
commonly occurring patterns of code that allocate a chunk
of memory and then consume it. Such patterns are fused
so that the allocation-consumption takes places at a finer
level of granularity, and a small constant amount of memory
is repeatedly allocated and consumed immediately. Other

approaches to compile time garbage collection are [12], [18]
and [7]. In addition, there are sharing analysis based realloca-
tion [14] and region based analysis [26]. Hoffman [10] uses
linear types to compile functional programs to C programs
that perform in-place updates. This is similar to our moti-
vating example in its end goal. An approach more relevant
to garbage collection is [11], which uses linear type system
to infer an abstract form of reference counting. However,
the method is built on limited datatypes that does not even
include lists in their full generality. In addition, the method
is not supported by an implementation.
The approaches that are closest to ours are [3] and [17].

The first paper suggests a liveness based garbage collection
for a first-order eager language. The second paper reworks
the method for a lazy language that also manages to garbage
collects parts of closures. However to represent liveness
values, they use an unrestricted set of demands (arbitrary
subsets of (0 + 1)∗). A demand is represented as an automa-
ton, and garbage collection is a simultaneous depth first
traversal of the heap and the automaton. Construction of
the automaton is costly. It involves approximating a context
free grammar to a nondeterministic automaton, which is
then converted to a deterministic finite automaton—both
costly processes. Since the set of demands is infinite with an
absence of a total order, they cannot use a binning technique
and avoid revisits as we do in our method. The idea of using
a finite domain of demands to simplify the analysis comes
from strictness analysis [13, 28]. Strictness analysis is similar
to liveness, and is used for space optimization of lazy lan-
guages. Recollect that a lazy language does not evaluate an
expression until it is required. Strictness analysis determines
the parts of an argument of a function that are guaranteed to
be used inside it. The identified parts can then be evaluated
before being passed to the function instead of being passed
as space consuming closures. Just as in our case, limiting
the strictness values to a small domain enables the analysis
to adress higher order functions. The idea of separating the
liveness environment by the calling context in a function
body also appears in [20], albeit with a different notion of
context.
The study in [1] observes that liveness may aid gener-

ational garbage collection. Because of the early collection
of objects, fewer objects would be moved into the tenured
generation and thus result in fewer major collections. We
believe that our implementation can be easily modified to
work in generational setting; the only additional issue in our
case being that inter-generational pointers have to recorded
along with their liveness values.

7 Conclusions
The disciplined use of recursive functions on algebraic data
types is a common paradigm that is followed while pro-
gramming in a functional language. This has an interesting
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consequence on heap usage. The traversals on the heap are
regular and follow identifiable patterns. In this paper we have
identified a few such patterns that are used to approximate
liveness values of structured data. The liveness values form a
lattice and the liveness analysis based on this lattice is much
more efficient and as precise as previous methods that use
an unrestricted set of liveness values. The use of a restricted
set of liveness values also leads to an improvement in the
design of the collector which does a breadth-first traversal
of the heap and also minimizes redundant traversals. An im-
plementation of a garbage collector based on the restricted
liveness set (LGC𝐹 ) confirms several benefits over collectors
that use an arbitrary set of liveness values (LGC𝐴), and also
over reachability based collectors (RGC): The analysis time
of LGC𝐹 is a significant improvement over LGC𝐴, the mini-
mum memory required for programs to run is comparable
with LGC𝐴, the number of redundant traversals over mem-
ory cells reduce to the level of RGC, and garbage collection
times are better than both LGC𝐴 and RGC.

Since the choice of liveness values in our case is not backed
by sufficient evidence of its applicability to a wider range of
programs, an avenue for improvement is a data-driven study
in the spirit of [9] to identify a better choice of a lattice of
liveness values. The choice could even be specialized to a set
of target programs. While it is not very difficult to change
the lattice of liveness values in our current implementation,
a more careful implementation could fully parameterize the
collector implementation with respect to the choice of lattice.
One could also extend the scope of the garbage collector

to support a more realistic functional language, and even
to a lazy language like Haskell by extending the techniques
in [17]. However, whether our technique could be extended
to programs in mainstream imperative languages like Java
with their state changing features and unrestricted usage of
heap, requires investigation.
It has been already been demonstrated in [24] that Java

programs too carry considerable data that are dead but reach-
able. Given this, one could ask whether the techniques used
here could carry over to programs written in Java. A possible
approach is based on [2]. This paper shows a close relation
between SSA, an intermediate form of programs used by
most compilers and functional programs of the kind that
we have considered in the paper. It does seem possible to
take the SSA form of programs written in Java by tapping
into the workflow of a compiler and following the technique
suggested in [2] convert these into the variant of Scheme
considered in this paper. However, given the different styles
of programming, whether it would be possible to identify
a small set of liveness patterns that can be used to yield an
analysis of reasonable precision is an open question.
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